Early identification of hearing loss in infants and young children using objective electrophysiological measures: Best practices and new research

PART 1a (8:30 am - 12:00 pm)

Susan Small, PhD
University of British Columbia
Hamber Professor of Clinical Audiology

CASLPM, Winnipeg, MN
April 20-21, 2017
Disclosure statement
BC Early Hearing Program (consultant) & Hamber Chair position: contribute to my research program

Other funding
UBC Faculty of Medicine
LEARNING OUTCOMES

As a result of this Continuing Education Activity, participants will be able to:

1) Conduct air- and bone-conduction auditory brainstem response testing in infants

2) Interpret auditory brainstem response findings for infants with normal hearing and conductive and sensory/neural hearing loss

3) Explain potential clinical applications of auditory steady-state responses and cortical auditory-evoked potentials for the infant population
TOPIC AREAS TO BE ADDRESSED

PART 1 (a & b):
Estimation of infant hearing thresholds using brief-tone auditory brainstem response (ABR)

PART 2:
Clinical application of auditory steady-state responses (ASSRs) & cortical auditory evoked potentials (CAEPs):
a brief overview of new research
PART 1:
Estimation of infant hearing thresholds using brief-tone auditory brainstem response (ABR) & identification of hearing loss type

8:30-10:00 am: a.1) Overview of methodology & clinical protocols
10:00 am - 12:00 pm: a.2) Case Studies
1:00-2:45 pm: b) Auditory neuropathy spectrum disorder (ANSD) -- Protocols + Case Studies
"The audiological assessment should include:

... A frequency-specific assessment of the ABR using air-conducted tone bursts and bone-conducted tone bursts when indicated. When permanent hearing loss is detected, frequency-specific ABR testing is needed to determine the degree and configuration of hearing loss in each ear for fitting of amplification devices.”
Air-conduction (AC) ABR to brief tones—preamble

Clinical goal for AC ABR testing?

- Accurate estimation of behavioural hearing thresholds
 AC thresholds within normal limits?
 OR
 AC thresholds elevated?

- Standard practice for pure-tone audiometry & diagnostic ABR testing
Clinical goal for BC ABR testing?

- Accurate estimation of BC thresholds to determine type of hearing loss responsible for elevated air-conduction (AC) thresholds

 Conductive? Sensorineural? Mixed?
 - How much is conductive?

- Standard practice for pure-tone audiometry

- Should be standard practice for infant ABR testing
Very Brief History of BC ABR testing:

- In the late 1970s and 1980s, BC ABR research emerged (brief tones and clicks) – some technical issues arose but research continued

Examples of early studies:
- Mauldin & Jerger (1979) found that adult wave V latencies to BC clicks were longer than AC clicks
- Boezeman et al. (1983) found the same for 2000-Hz brief tones
- Cornacchia et al. (1983) compared AC & BC ABR wave V latencies in infants & adults; found that infant wave V latencies to BC stimuli were prolonged relative to adults

-- Differences in AC vs BC ABR results and maturational effects emerging in ABR research
Examples of early studies that focussed on clinical use of brief-tone BC ABR testing in infants:

Clicks:

Brief-tones:

Examples of more recent infant brief-tone BC ABR research:

(i) feasible to record brief-tone BC ABRs clinically
(ii) frequency- and mode- (AC vs BC) dependent infant-adult differences to be accounted for in their interpretation
Overview of methodology
Typical stimuli used to elicit the ABR (e.g., Davis et al., 1984)

Under investigation
Air- and bone-conducted brief tones

Stimulus parameters

"2-1-2" (cycles) linearly-gated tones; 5-cycle Blackman tones (no plateau)

500 Hz: AC/BC 4 ms rise/fall, 2 ms plateau; 10 ms
1000 Hz: AC/BC 2 ms rise/fall, 1 ms plateau; 5 ms
2000 Hz: AC/BC 1 ms rise/fall, 0.5 ms plateau; 2.5 ms
4000 Hz: AC 0.5 ms rise/fall, 0.25 ms plateau; 1.25 ms

* BC 1 ms rise/fall, 0.25 ms plateau, 2.25 ms

* to reduce ringing

(Small & Stapells, 2003)
Calibration
Supra-aural TDH49/ER3-A insert earphones/B71 transducer

UNITS: $\text{dB peak (peak hold) minus } 3 \text{ dB} = \text{dB ppe}$

AC: dB ppe SPL

BC: $\text{dB ppe re: } 1 \mu\text{N}$

Acoustic calibration for 0 dB nHL

<table>
<thead>
<tr>
<th></th>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
<th>4000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC TDH</td>
<td>25</td>
<td>22</td>
<td>67</td>
<td>23</td>
</tr>
<tr>
<td>AC ER3-A</td>
<td>22</td>
<td>25</td>
<td>54</td>
<td>26</td>
</tr>
</tbody>
</table>

(Small & Stapells, 2003)
ABR testing: What we aim for in the clinic!

AC testing

- insert earphones preferred for comfort & more accurate hearing-aid fittings
- supra-aural earphones can be used when insert earphones not appropriate
Bone oscillator coupling method in infants

Small, Hatton & Stapells, 2007

- No significant differences 500-4000 Hz

Caveat: used trained individuals for both methods
-- We do not recommend that a parent couple the bone oscillator to their child’s skull

- BC EHP: clinicians often use hand-held method
 – least likely to wake up infant
Bone oscillator placement

- Small, Hatton & Stapells (2007) compared infant ASSR thresholds at different positions on the skull

No difference for T versus M position

Significantly poorer for F versus T or M position

- BC EHP: clinicians use the T position method
 - greatest range of intensities available
 - easier to maintain firm consistent placement than M position
EEG recording parameters

- AC: 1-channel recording

Consider two-channel AC recordings if large asymmetry between ears

Adapted from Stapells & Oates (1997)
EEG recording parameters

- **Cz**
- **M1**
- **M2**
- **ground**
- **Stimulus left**

BC: 2-channel recording
EEG recording parameters

- **Always use two-channel BC recordings**
EEG recording parameters

EEG filter:
- High Pass: 20-30 Hz
- Low Pass: 1500-3000 Hz (Slope: 6 or 12 dB/octave, analog)

Artifact reject:
- Trials exceeding ± 25 µV (equals Nicolet "50 µV")
 -- can reduce this to optimize recording (balance with rejection rate)

of trials:
- Typically 2000 per average

of sweeps:
- Two or more as needed to obtain good signal-to-noise ratio

Display Scale:
- Avoid too large a scale close to threshold

Adapted from Stapells & Oates (1997)
Air- and bone-conduction brief tones

Setting latency window for signal-to-noise ratio (SNR) & residual noise (RN)

<table>
<thead>
<tr>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
<th>4000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC & BC</td>
<td>AC & BC</td>
<td>AC & BC</td>
<td>AC & BC</td>
</tr>
</tbody>
</table>

Start
10.5

End
20.5

Note: should shift 10 ms window later for higher presentation levels to avoid stimulus artifact

500 Hz BC stimuli > 30 dB re: 1 µN → 14 – 24 ms

(BCEHP, 2012)
Interpretation of waveforms

Response present:

- SNR > 1
- Wave V visually replicates

Response absent:

- SNR << 1
- Visually flat
- RN < 0.05-0.08 µV

Cannot evaluate:

- SNR << 1
- RN > 0.08 µV
- No repeatable peaks
- Not visually flat

(BCESHP, 2012)
SNR latency windows

Infant: 12 months
BC left mastoid

2000 Hz
500 Hz

dB nHL
6.5 16.5
10.5 20.5

Ipsi
Contra

Ipsi
Contra

Ipsi
Contra

Ipsi
Contra

Ipsi
Contra

Green check marks:
- 2000 Hz: 60 dB nHL, latency 6.5 ms
- 500 Hz: 50 dB nHL, latency 10.5 ms

Red X:
- 2000 Hz: 40 dB nHL, latency 16.5 ms
- 500 Hz: 20 dB nHL, latency 20.5 ms
Infant: 12 months
BC left mastoid

SNR latency windows

All SNRs < 0.54
Cannot evaluate:
- SNR <<1
- RN > 0.08 µV
- No repeatable peaks
- Not visually flat

- SNR = 0.51 µV
- RN = 0.12 µV
- Not visually flat

- SNR = 0.47 µV
- RN = 0.15 µV
- Not visually flat

- SNR = 0.78 µV
- RN = 0.09 µV
- Not visually flat

- SNR = 0.32 µV
- RN = 0.05 µV
- Visually flat
What does the absence or presence of a response mean re: the infant’s hearing?

• need to relate these results to what is “normal” or “near normal” for AC & BC stimuli for infants

• need to know how these elevated responses predict the degree & type of hearing loss
Definition of terms (BCEHP, 2012)

Normal behavioural threshold:
- 25 dB HL

Normal ABR maximum level:
- ABR presentation level at which the majority of normal-hearing infants have a response present

eHL correction:
- Correction factor used to estimate behavioural hearing threshold (dB HL) from the ABR threshold (dB nHL)

\[
\text{ABR threshold (dB nHL)} - \text{eHL correction (dB)} = \text{estimated behavioural threshold (dB HL)}
\]
Normal ABR maximum levels & eHL correction for infants

Air- and bone-conduction ABR

<table>
<thead>
<tr>
<th></th>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
<th>4000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC EHP</td>
<td>AC</td>
<td>AC</td>
<td>AC</td>
<td>AC</td>
</tr>
<tr>
<td>Normal ABR Max (dB nHL)</td>
<td>35</td>
<td>35</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Range in literature</td>
<td>30-35</td>
<td>30-35</td>
<td>20-30</td>
<td>20-25</td>
</tr>
<tr>
<td>BC EHP eHL correction (dB)</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Range in literature</td>
<td>10-15</td>
<td>5-10</td>
<td>0-5</td>
<td>-5-0</td>
</tr>
</tbody>
</table>

(BC-EHP 2012, 2015; Small & Stapells, Ch. 21, 2017)
Normal ABR maximum levels & eHL correction for infants

Air- and bone-conduction ABR

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
<th>4000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal ABR Max (dB nHL)</td>
<td>AC</td>
<td>BC</td>
<td>AC</td>
<td>BC</td>
</tr>
<tr>
<td>Range in literature</td>
<td>30-35</td>
<td>20</td>
<td>30-35</td>
<td>na</td>
</tr>
<tr>
<td>BC EHP (dB nHL)</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>na</td>
</tr>
<tr>
<td>Range in literature</td>
<td>10-15</td>
<td>-5</td>
<td>5-10</td>
<td>na</td>
</tr>
</tbody>
</table>

(BC-EHP 2012, 2015; Small & Stapells, Ch. 21, 2017)
Estimation of infant hearing thresholds
BABY X
AIR-CONDUCTION, 2000 Hz

ELEVATED THRESHOLD @ 60 dB nHL

Flat tympanogram
Absent OAE

Conductive?
BABY X
AIR-CONDUCTION, 2000 Hz

80 dBnHL

60 dBnHL

50 dBnHL

30 dBnHL

NORMAL

Flat tympanogram
Absent OAE

Conductive?
Could be sensorineural or mixed!
Need BC ABR testing to be sure!
BABY X
AIR-CONDUCTION @ 2000 Hz

2-channel BC @ 30 dB nHL

ELEVATED THRESHOLD @ 60 dB nHL

Flat tympanogram
Absent OAE

BC ABR ABSENT @ 30 dB nHL

sensorineural (or mixed) hearing loss
• If audiologist conducts only AC ABR testing and tympanometry & otoacoustic emissions (OAEs) to identify a conductive component
 ➢ *May lead to error*

• Tympanometry in very young infants:
 - may fail to identify middle-ear involvement
 - flat tympanogram does not assess amount of hearing loss attributed to the conductive component

• OAEs:
 - sensitive to middle-ear involvement but only helpful if present

Only BC thresholds can distinguish between sensorineural, conductive and mixed losses

AND
determine magnitude of conductive loss
How well do BC ABR results predict the nature of the hearing loss (conductive versus sensorineural loss?)

Data collected from BC EHP diagnostic follow up:

<table>
<thead>
<tr>
<th></th>
<th>Nature of loss is certain</th>
<th>All data (includes cases where assumptions made)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 Hz</td>
<td>91.9% (65 cases)</td>
<td>81.2% (126 cases)</td>
</tr>
<tr>
<td>2000 Hz</td>
<td>94.2% (37 cases)</td>
<td>93.7% (49 cases)</td>
</tr>
</tbody>
</table>

(Hatton, Janssen & Stapells, 2012)
Where does BC ABR testing fit in the diagnostic protocol?

- After AC thresholds are established for both ears?
- After AC threshold search, tympanometry & OAEs?
- Before AC testing?
- As soon as AC thresholds are determined to be elevated?

➤ Want BC ABR thresholds early in diagnostic testing to avoid delays in medical follow-up or intervention

✓ BC testing occurs after AC thresholds are shown to be elevated in at least one ear at 2000 Hz (> normal max) -- before AC threshold search
BC EHP ABR Test Protocol (2012)

Tone-ABR Test Sequence (partial)

Start
- EAR#1
 - AC 2k
 - 30 dB nHL

Go to 500 Hz @ normal max Ear#1
-- 30 dB nHL

Begin AC at 2000 Hz at normal max Ear#1
-- 30 dB nHL

AC normal @ 2k both ears

Go to 500 Hz @ normal max -- 35 dB nHL
Case 1: Diagnostic ABR following “refer” from BC EHP

NORMAL BILATERALLY
BC EHP ABR Test Protocol (2012)

Tone-ABR Test Sequence (partial)

Start

Present

EAR#1
AC 2k
30dB

Absent

Conductive hearing loss

Present

EAR#2
AC 2k
30dB

Absent

BC normal level

Present

EAR#2
BC 2k
30dB

Absent

Present

EAR#2
BC 500
20dB

Absent

Present

EAR#2
BC 2k
60dB & thresh

Absent

EAR#1
BC 2k
30dB

Present

EAR#1
BC 500
60dB & thresh

Absent

go to

EAR#1
AC 2k
60-80dB & thresh

AC threshold search

BC normal level

60-80dB, thresh

600 Hz
(Each ear @ 30-40 dB)
BC EHP ABR Test Protocol (2012)
Tone-ABR Test Sequence (partial)

Start

Present

EAR#1
AC 2k
30 dB

Absent

SNHL hearing loss

Present

EAR#1
AC 2k
30 dB

Absent

BC elevated level
(60 dB nHL)

Present

EAR#1
BC 2k
30 dB

Absent

AC threshold search

Present

EAR#1
BC 500
20 dB

Absent

AC 500 Hz
[Each ear @
30-40 dB]

Present

EAR#2
BC 500
20 dB

Absent

EAR#2
AC 2k
30 dB

Present

EAR#2
BC 2k
60 dB & thresh

Absent

EAR#1
BC 500
20 dB

Present

EAR#1
BC 2k
60 dB & thresh

Absent

EAR#2
AC 2k
60-80 dB, thresh

Present

EAR#1
AC 2k
60-80 dB, thresh

Absent

500 Hz
AC & BC
Each ear

Present

A

B

C

go to

A

C

D

E
Features of BC EHP protocol:

- Start at “normal levels” for AC testing to save time if infant has hearing within normal limits
- Go to BC testing early in test sequence when AC is elevated
- Go to maximum BC testing levels first if BC is not within normal limits
- Use large steps when searching for threshold; small step sizes as time allows

- Want to determine type then degree of loss as efficiently as possible
Isolation of test cochlea
BC ABR: Isolation of test cochlea

INFANTS
- Clinical masking?
 -- IA for AC stimuli are not known
 -- IA for BC have been approximated with indirect measures (ABR & ASSR data)
 -- effective masking levels for BC not known for ABR (BC ASSR data available)
 -- are corrections for occlusion effect needed? (BC ASSR data available)

ADULTS
- Use masking to isolate test ear as needed
 - interaural attenuation (IA) & effective masking levels for AC & BC stimuli are well established
 - corrections for occlusion effect are known
<table>
<thead>
<tr>
<th>Study</th>
<th>Method</th>
<th>Indirect measure</th>
<th>Age</th>
<th>Interaural Attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang & Stuart 1987</td>
<td>ABR clicks</td>
<td>Wave V latency</td>
<td>Adult</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neonate</td>
<td>25-35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 months</td>
<td>15-25</td>
</tr>
</tbody>
</table>
Interaural attenuation of BC stimuli – indirect measures

<table>
<thead>
<tr>
<th>Study</th>
<th>Method</th>
<th>Indirect measure</th>
<th>Age</th>
<th>Interaural Attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang & Stuart 1987</td>
<td>ABR clicks</td>
<td>Wave V latency</td>
<td>Adult</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neonate</td>
<td>25-35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 months</td>
<td>15-25</td>
</tr>
<tr>
<td>Small & Stapells 2008</td>
<td>ASSR- AM/FM 500-1000 Hz Fc</td>
<td>Ipsi/contra asymmetries</td>
<td>Adult</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-6 months</td>
<td>10-30</td>
</tr>
</tbody>
</table>
Interaural attenuation of BC stimuli – indirect measures

<table>
<thead>
<tr>
<th>Study</th>
<th>Method</th>
<th>Indirect measure</th>
<th>Age</th>
<th>Interaural Attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang et al 1987</td>
<td>ABR clicks</td>
<td>Wave V latency</td>
<td>Adult</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neonate</td>
<td>25-35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 months</td>
<td>15-25</td>
</tr>
<tr>
<td>Small & Stapells 2008</td>
<td>ASSR- AM/FM 500-1000 Hz Fc</td>
<td>Ipsi/contra asymmetries</td>
<td>Adult</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-6 months</td>
<td>10-30</td>
</tr>
<tr>
<td>Hansen 2010 (M.Sc. Thesis)</td>
<td>ASSR- AM/FM 1000 Hz</td>
<td>Effective masking levels (Binaural AC)</td>
<td>Adult</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-7 months</td>
<td>10-15</td>
</tr>
</tbody>
</table>

- Interaural attenuation for BC stimuli in infants is a minimum of 10-35 dB depending on the age
Utilize ipsilateral/contralateral asymmetries?

> Expected pattern for normal cochleae up to 1 to 2 years of age -- normal hearing or conductive loss (e.g., aural atresia)

[e.g., Foxe & Stapells, 1993; Stapells & Ruben, 1989; Stapells & Mosseri, 1991]

<table>
<thead>
<tr>
<th>Amplitude:</th>
<th>contra smaller than ipsi</th>
<th>Latency:</th>
<th>contra later than ipsi</th>
</tr>
</thead>
</table>

BC left mastoid

2000 Hz @ 40 dB nHL
Utilize ipsilateral/contralateral asymmetries?

- Expected pattern for normal cochleae up to 1 to 2 years of age -- normal hearing or conductive loss (e.g., aural atresia) [e.g., Foxe & Stapells, 1993; Stapells & Ruben, 1989; Stapells & Mosseri, 1991]

2000 Hz @ 40 dB nHL

Amplitude: contra **smaller than** ipsi
Latency: contra **later than** ipsi
Bone-conduction ABR

Contra >> IPSI

SEVERE UNILATERAL (RIGHT EAR) SNHL

(Stapells, personal communication)
Case 2: 13 months – referred from NHS

2000 Hz BC Right Mastoid

Ch A = right
Ch B = left

Which ear is responding? Right ear!

30 & 40 dB nHL: Ipsi > contra

30 dB repeated
13 months – referred from NHS

2000 Hz BC **Left** Mastoid

Ch A = right
Ch B = left

Which ear is responding? **Left ear!**
Factors contributing to BC ipsi/contra asymmetries?

1. Infant-adult differences in positioning of neural generators

2. Greater IA compared to adults due to unfused cranial sutures

Evidence: infant AC ABR/ASSRs show consistent ipsi/contra asymmetries; adult AC ABR/ASSRs do not show these patterns

(Reviewed in Small & Stapells, 2017)

- Two-channel recordings are routinely used by our provincial program (BCEHP) for BC brief-tone ABRs

NOTE: Can also use ipsi and contra EEG channel for AC if a large difference in thresholds between ears exists (and contra masking not used)
What if ipsi/contra asymmetries in BC ABRs are ambiguous?

- Need clinical masking

Main reason masking not routinely used clinically for infant BC ABRs:
-- effective masking levels (EMLs) for BC ABR stimuli in young infants have not been measured directly

- currently under investigation in my lab (Lau, M.Sc. thesis)

- What do we know about EMLs for BC auditory evoked potentials?

-- EMLs for infant BC ASSR stimuli were estimated for 500-4000 Hz using binaural AC masking (Hansen & Small, 2012; Small, Smyth & Leon, 2014)
Recommended EMLs (dB SPL) for BC ASSR stimuli presented at 35 dB HL

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant</td>
<td>81</td>
<td>68</td>
<td>59</td>
<td>45</td>
</tr>
<tr>
<td>Adult</td>
<td>66</td>
<td>63</td>
<td>59</td>
<td>55</td>
</tr>
</tbody>
</table>

* Significant infant minus adult EML difference (dB)

- Frequency-dependent infant-adult differences in EMLs except at 2000 Hz

(Hansen & Small, 2012; Small, Smyth & Leon, 2014)
Is there an occlusion effect (OE) in infants?

- Adults with normal hearing or a sensorineural hearing loss: occluding the ear canal results in a significant improvement in pure-tone BC thresholds.

- Do we need to correct for an OE in infants when we obtain BC thresholds with earphones in place?

We investigated this phenomenon in infants (2 studies):

(i) Small, Hatton & Stapells, 2007
 - *no occlusion effect for BC ASSR thresholds 500-4000 Hz*

(ii) Small & Hu, 2011
 - *Sound pressure ‡ in ear canal when occluded: infants >> adults*
 - % occurrence of OE (+ mean amplitude/threshold data):
 - Older infants: OE emerging at 500 & 1000 Hz
 - Young infants: OE absent at 1000 Hz (very small at 500 Hz)
Earphones in or out during BC testing?

Recommendations (conservative):
(i) Young infants: leave earphones in place
(ii) Older infants: remove earphones
Case Study
Case 2: Diagnostic ABR following “refer” from BC EHP

1st ABR

AC 2000 Hz

BC 2000 Hz – Left mastoid

<table>
<thead>
<tr>
<th>dB nHL</th>
<th>Ipsi</th>
<th>Contra</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>30</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>30</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

ipsi > contra
1st ABR

dB nHL

BC 500 Hz

dB nHL

20

Ipsi

Contra

20
1st ABR

dB nHL

- **80**: Green check mark
- **75**: Red x
- **45**: Red x

AC 500 Hz

AC 4000 Hz

- **dB nHL**: 45
What we know so far: Elevated AC & BC both ears

- **LEFT**: severe SNHL at 500 Hz (threshold @ 80 dB nHL) rising to no worse than mild/moderate SNHL at 2000 & 4000 Hz
- **RIGHT**: at least a moderate SNHL at 2000 Hz

- need further ABR testing to fill in gaps – summarized in table on next slide
3rd ABR (2nd ABR not shown)

AC 2000 Hz @ 110, 100 & 90 dB nHL

Larger amp

110

contra

ipsi

110

100

90

dB nHL

dB nHL

dB nHL
<table>
<thead>
<tr>
<th>Stimulus</th>
<th>ABR (dB nHL)</th>
<th>Estimated Behavioural Threshold (dB eHL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RIGHT</td>
<td>LEFT</td>
</tr>
<tr>
<td>AC – 500 Hz</td>
<td>> 100</td>
<td>80</td>
</tr>
<tr>
<td>BC – 500 Hz</td>
<td>> 20</td>
<td>> 20</td>
</tr>
<tr>
<td>AC – 1000 Hz</td>
<td>> 100</td>
<td>≤ 55</td>
</tr>
<tr>
<td>AC – 2000 Hz</td>
<td>> 100</td>
<td>40</td>
</tr>
<tr>
<td>BC – 2000 Hz</td>
<td>> 60</td>
<td>35-60</td>
</tr>
<tr>
<td>AC – 4000 Hz</td>
<td>> 90</td>
<td>25</td>
</tr>
</tbody>
</table>

+ ipsi/contra asymmetries (BC & AC) support left ear responding

1st appointment: BC ABR established nature & severity of loss L & R

2nd and 3rd appointment completed AC ABR testing:
-- L: thresholds at 500, 1000, 2000 & 4000 Hz (reverse slope SNHL)
-- R: established profound loss

MRI/CT: confirmed absence of cochlear nerve on the R (click ABR—no clear signs of ANSD)
Thank you for your attention!

Thoughts?
Case Discussion
10:15 AM to 12:00 PM

Cases 1 & 2: marked waveforms & interpretation provided
Case 3: unmarked waveforms provided (annotated version provided after discussion)

Questions to ponder when reviewing cases:
• Did the ABR assessment(s) meet all EDHI goals?
• Did you identify any issues with waveform interpretation, test sequence, elements of protocol?
• What would you have done differently (or the same)?